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(in >1,4 relationships) is given by E4, where e* = ((ttk)
[/2 with 

«, and tk representing the "hardness" of atoms;' and k (kcal-mol"1), 
r* = r, + rk, the sum of the van der Waals radii of atoms i and 
k (A), and r is the distance between the two atoms (A). When 
r*/r > 3.311, eq A5 reduces to Es = e*(336.176)r*/r to prevent 
two atoms fusing when they come very close together. E6 is the 
dipole interaction energy, where M, and /u; are the bond moments 
(D) of two bonds close in space, x is the angle between the dipoles 
(deg), R is the line between midpoints of the bonds, a, and a ; are 
the angles (deg) between the dipole axes and the lines along which 
R is measured, 14.39418 converts ergs-molecule""1 to kcal-mor1, 

1. Introduction 
Even though the comparatively young discipline of solid-state 

inorganic chemistry has made great progress during the last three 
decades, there still seems to be a strange discrepancy in its 
methodology. 

On one hand, modern solid-state chemistry is unthinkable 
without X-ray crystal structure analysis, which allows a detailed 
and unambiguous description of the geometry and stoichiometry 
of the often complex chemical structures. Therefore, one might 
well take the view that these huge molecules synthesized by 
solid-state chemists are at least as well characterized as the 
"typical" small molecules of solution chemistry, whose structures 
are often determined by various spectroscopic techniques, as well 
as by crystallography in the solid state. 

On the other hand, a solid-state chemist engaged in generating 
three-dimensional periodic structures can plan the individual 
synthetical steps only in a very rudimentary way and must often 
rely on the classical "shake and bake" techniques.1 While organic 
chemistry faces up each day to incredibly complicated organic 
(natural or unnatural) molecules whose syntheses are planned step 
by step, an even approximately similar strategy to retrosynthesis,2'3 

for example, seems to be out of the question for inorganic solid-
state chemistry. As a matter of fact, there is no simple Ansatz 
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in sight to predict nontrivial reaction paths toward imagined 
structures. 

Besides the greater elemental variety of solid-state chemistry 
compared to organic chemistry, there is another fundamental 
reason for this finding. The majority of solid-state inorganic 
compounds is, in fact, only stable in the solid phase. This might 
sound trivial, but in reality it represents a singularity compared 
to the behavior of molecules that arise from solution chemistry. 
A typical giant solid-state molecule showing fascinating structural 
details in the crystal decomposes at the melting point because its 
chemical bonding is intimately connected to the ordered crystalline 
state. Thus, the confinement to a single small unit (the molecule), 
which is so successful in organic synthesis, does not seem to work. 
In addition, there is obviously no easy way to see or define a 
"functional group" in a solid-state compound, although this concept 
is so extremely important in organic synthesis. Even worse, one 
has to face the sad fact that solid-state counterparts to "functional 
group interconversions" or "synthons" are extremely rare. 

What is retained in inorganic as well as in organic chemistry, 
in the solid state or in solution, is the time-honored and useful 
concept of acidity and basicity, except that this idea, and its 
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associated notions of electrophilicity and nucleophilicity, is not 
well defined in the solid state. This paper will face up to the 
demand for a solid-state synthetic language including descriptors 
for reactivity, acidity, and basicity. 

2. Motivation and Starting Point 
Fortunately, especially in the last decade, some solid-state 

syntheses of new structures give rise to the hope that the con­
struction of a synthetic language including reactivity or acidity 
and basicity for the solid state should be worth trying, in principle. 

In the solid-state chemistry of low-dimensional solids, Rouxel 
and others4,5 have brought "soft chemistry" to work, incorporating 
(i) redox chemistry involving intercalation/deintercalation pro­
cesses, (ii) acid-base reactions followed by structural reconden-
sations, and (iii) grafting reactions using van der Waals gaps 
separating internal surfaces of solids. 

Another example is the beautiful solid-state liquid-state do­
nor-acceptor chemistry that has allowed infinite lattices to be "cut" 
into smaller pieces. As Tarascon and DiSalvo have shown, some 
representatives of the AMo3X3 structure type with A = Li, Na 
and X = Se, Te can be dissolved when treated with polar solvents, 
finally giving purely inorganic transition-metal polymer solutions.6 

In general it should be very helpful to detect the intrinsic 
reactive or sensitive atomic parts of a given structure in the solid 
state. In other words, which sites of a structure will be most 
influenced by a change in the overall electronic conditions? A 
natural way of intellectually dividing a structure into smaller units 
could thereby be achieved, without referring back to the language 
of, for example, ionic or covalent bonding. There is nothing wrong 
with the latter, except for the tendency of each to overestimate 
the specific subparts they want to see (coordination polyhedra, 
clusters, metal-metal or metal-nonmetal bonds, and so on). 

Our approach will not investigate the strength of chemical bonds 
in given crystal structures. Besides the fact that there are already 
empirical bond length-bond strength formulas available,7"10 one 
might well imagine a bonding situation where a strong chemical 
bond is likely to break because of a stronger one formed, while 
a weak bond remains inert because no alternative stronger bond 
can be generated, for steric reasons, for instance. Again, it seems 
more reasonable to seek the reactive parts of a structure, con­
centrating on them while planning a synthesis. Therefore, we will 
try to detect and quantify, by means of electronic structure 
calculations, the reactive sites in a given structure. As will be 
seen, we believe that structures do naturally "fall apart" into 
sublattices of donors and acceptors. 

In this paper we will set up different reactivity descriptors for 
atoms and bonds within solid-state compounds. These indicators 
are generated via quantum mechanical calculations of the elec­
tronic structure in the solid. The underlying concept is density-
functional theory including the concept of absolute hardness, while 
the first calculations are performed within the framework of 
extended Htickel (EH) theory in its tight-binding approach. 

2.1. The Hard/Soft Acid-Base Principle. There is no doubt 
that the formal Lewis reaction 

Lewis acid + Lewis base = Lewis acid-base complex 

is one of the most universal chemical reactions one can think of. 
The Lewis acid represents the electron acceptor, whereas the Lewis 
base is the electron donor. The infinite inorganic solid, of course, 
may be seen as the most striking example of a strong acid-base 
complex. 

Almost 30 years ago, the Lewis theory of acids and bases was 
greatly augmented by the qualitative description of "hard" and 
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"soft" acids and bases, as done by Pearson.""14 According to 
Pearson's early thesis, a "soft" acid is a big species (cation), not 
too highly charged, whose valence shell is easily polarizable, in 
contrast to a "hard" acid, which is well represented by a small 
and highly charged species (cation), difficult to polarize. On the 
other hand, a "soft" base is an easily polarizable, easily oxidizable 
species (anion) with a small electronegativity and low-lying or-
bitals. Consequently, a "hard" base is generated by a species 
(anion) which is difficult to polarize or oxidize, with a high 
electronegativity and high-lying empty orbitals. Pearson's rules 
that "hard" prefers "hard" and "soft" prefers "soft" have already 
become textbook material. It cannot be overemphasized that, in 
contrast to Pauling's electronegativity rule,7 Pearson's concept 
manages to explain why the solid-state reaction 

LiI + CsF = LiF + CsI 
is highly exothermic (AJi = -130 kJ/mol) on going to the right 
side which is the "soft-soft" and "hard-hard" one. As convincing 
as the latter example is, it is surprising that Pearson's concept 
has not become more popular in solid-state chemistry. 

It was Klopman who set up a quantum-chemical treatment of 
chemical reactivity15'16 for molecules using polyelectronic per­
turbation theory. His ideas could at least rationalize the initial 
guess of hard-hard combinations being bonded mainly by ionic 
forces and soft-soft combinations by mainly covalent forces. While 
referring to the position of the HOMO and LUMO, Klopman 
introduced the terms "charge-controlled" and "orbital-controlled" 
for hard-hard and soft-soft combinations, respectively. Moreover, 
he introduced reactivity scales and managed to connect them to 
measurable quantities such as formation enthalpies. 

However, although Pearson's concept proved to be a useful one 
in estimating specific stabilities while combining different ions 
or molecules, it more or less remained an empirical criterion for 
20 years. The quantification of "hard" and "soft" behavior was 
only set up within empirical formula schemes such as those of 
Drago, Wayland, and Edwards, for example. These typically 
include empirical "softness" and "strength" values for different 
molecular species, somehow linked to stability constants.17"20 

A definite breakthrough came with the paper of Parr and 
Pearson in 1983 in which they simultaneously introduced absolute 
electronegativity % and absolute hardness y.21 Both were defined 
in terms of the ionization potential / and the electron affinity A 
of a system having total energy E and total electron number N 
according to 

X = -M ( D 

= -(dE/dN)^ (2) 

= V2(I + A) (3) 

where n is the chemical potential and N0 is the number of electrons 
within the neutral molecular species, and 

Tj = y^E/dN2)^ (4) 

= -Y2OxZdN)1,* (5) 

* Z2(I -A)>0 (6) 
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The very last line is only valid for stable systems, stating that the 
first ionization potential is larger than the corresponding electron 
affinity. In fact, for atoms and molecules there are no counter­
examples to eq 6 although a mathematical proof has not been given 
so far. For example, if eq 6 is not true for a system S, then 2S 
is unstable with respect to S+ and S". Such systems would be 
described with a negative Hubbard U parameter22 (attractive 
electron correlation). 

The above statements can be exactly expressed in terms of 
quantum-mechanical quantities with the help of density-functional 
theory, i.e., as different derivatives of E versus TV (see above). 
Thereby the "soft" and "hard" terms are given a physical basis 
(similar to other vivid expressions in the language of modern 
science, as, for example, the terms of "color", "flavor", or "charm" 
which are widely used in elementary particle physics). 

2.2. Total Hardness and Density-Functional Theory. In contrast 
to traditional quantum chemical methods, density-functional (DF) 
theory is based on the electron density rather than on the electronic 
wave function ypP~2i As introduced by Hohenberg, Kohn, and 
Sham,26,27 DF theory explicitly includes many-particle effects that 
are essential for chemical bonding, and it has been proven to give 
an accurate description of a system's electronic ground state by 
Levy.28 Within DF theory the ground state (GS) is a functional 
of the one-particle density n{f), i.e. 

* s t\n(r)\ (7) 

The GS energy E0 is given as the minimum of the functional 
E\n(r)} which can be separated into contributions of the kinetic 
energy of noninteracting electrons, classical Coulomb energy of 
the charge density and a functional for exchange and correlation 

EHf)] = T\n(r)\ + 

J n. n(r)n{rr) r 

tfjdr' + E™\n{r)\ + J dr n{r)v<«(.r) (8) 
where v"l(r) is the Coulomb potential of the fixed nuclei. In­
troducing the local-density approximation 

E"\n(r)\ = j ' drn(r)tK\n{7)} (9) 

which is exact in the limit of slowly varying densities, the solution 
of the many-particle problem is reduced to the self-consistent 
solution of the Kohn-Sham equations 

{-V2 + v(r)\ij(r) = 6,V,(F) (10) 

with an effective one-particle potential of the form 

J 2n(?0 
— - p : d r ' + v"{n(r)\ (11) 

which consists of an external potential, a Hartree potential, and 
a potential for exchange and correlation. Neglecting its com­
paratively fast computation time, by solving Hartree-like equations 
in a self-consistent manner, DF theory is truly size-consistent and 
remains an orbital theory, thereby offering advantages in inter­
pretation compared to configuration interaction (CI) methods. 
Unfortunately, the electronic "interplay" between different con­
figurations, which is so important in chemical reactions (transition 
states), is lost, and moreover, an in principle exact DF calculation 
is always only as reliable as the incorporated parametrization 
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(26) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871. 
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Figure 1. Total energy E of an atomic or molecular system as a function 
of the electron number TV according to density-functional theory.24 

scheme for exchange and correlation. On the other hand, schemes 
well beyond the local-density approximation are already availa­
ble.29 In short, at the present time experience suggests DF 
calculations to be practical and accurate schemes for treating 
complex systems. 

From a chemical viewpoint, it is most interesting to investigate 
how the total energy E of the ground state might change with 
the particle (electron) number TV. If one expresses £ as a power 
series of TV while keeping the potential v constant, i.e., the positions 
of nuclei and the atomic numbers remain fixed, 

E = E0 + (IfJ d i V + ; ^ ) dTV2 + ... (12) 

= E0 + fidN + v dN2 + ... (13) 

to a reasonable accuracy, the change of the electronic ground state 
due to a change in the number of electrons is expressed by the 
chemical potential n which equals the slope of the function E 
versus TV at N0. It measures the escaping tendency of a charged 
particle and, as a Lagrange multiplier, it plays a similar role within 
DF theory as the energy plays in the Ritz variational principle 
of wave-function theory. As shown in Figure 1, which gives an 
atom's or molecule's E versus TV function in a schematical way, 
the slope of this function can be easily approximated by taking 
the arithmetic average of the slope on the "left" side (equal to 
the negative ionization potential I) and the slope on the "right" 
side (equal to the negative electron affinity A) as done in eq 3. 
Upon comparing Parr and Pearson's finite-difference approxi­
mation to n with the formally identical Mulliken expression for 
electronegativity, it emerges that electronegativity is a concept 
surprisingly consistent and moreover justified within an accurate 
quantum-mechanical description of an electronic system. There 
is, however, a serious drawback: as pointed out early by Perdew 
et al.,30 investigations on fractional electron numbers as a time 
average led to the conclusion that, strictly speaking, the E versus 
TV curve is a series of straight line segments with slope discon­
tinuities at integral N. [This does not necessarily hold for an atom 
or functional group in a molecule, and not necessarily for a species 
of finite T.] Consequently, the chemical potential jumps because 
of irregularities in the exchange-correlation potential. Interest­
ingly, this fact is known as the band gap problem in calculating 
semiconductor band structures using DF theory. We will face 
it again in section 3.3. 

On the other hand, the second derivative t], measuring the 
curvature of the E versus TV curve, is of comparable chemical 
interest as it measures the electronic tendency of a system to 
disproportionate and the sensitivity of the electronegativity to 

(29) Svane, A.; Gunnarsson, O. Phys. Rev. B 1988, 37, 9919-9922. 
(30) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 

1982, 49, 1691-1694. 
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change in the number of electrons. If the second derivative is 
greater than zero, the ground-state E is concave upward with 
changing particle number, and the system is stable against falling 
into charged pieces. Again the meaning of this statement can 
easily be visualized by looking at Figure 1. From elementary 
differential analysis, the finite-difference approximation for the 
curvature r\ is 

n « Y2(E
+ + E-) - £° (14) 

This means that the system is more likely to stay at E° instead 
of breaking up into two pieces having energies of E+ and E~, 
indicated by a positive value of r). Therefore, it is obvious to think 
of the curvature value r\ as a resistance indicator of the system 
against any electronic (chemical) attack. Most importantly, using 
the finite-difference approximation which connects n to the 
HOMO-LUMO gap of molecules, there are no difficulties in 
definitions arising from those discontinuities in the E versus ./V 
curve by the «*c jump. Probably the first one to recognize the 
importance of this finite-difference approximation was Pariser 
who connected it to the self-repulsion integral.31 

There are already available several tables of atoms' and small 
molecules' absolute electronegativity and absolute hardness 
values,24,32,33 calculated using numerical estimates of electron 
affinities and ionization potentials from gas-phase measurements. 
In general, these data are in fascinating agreement with chemical 
knowledge. The approximate formulas 

and 

A P 1 (XA - XB)2 

A£ = - - (16) 

introduced by Parr and Pearson21 and substantially refined by 
Nalewajski (by incorporating electrostatic effects and resolving 
the "hard-hard paradox"34) allow the semiquantitative measure 
of electron transfer AiV and energy transfer A£ during a chemical 
reaction. 

To further characterize the local consequences of total hardness 
at an atom within a molecule, a new quantitative scheme was 
proposed,35,36 using the expressions 

&E = ndN + §n(r)dv(F) dr (17) 

d/i = 2-n dN + Jf(F) dv(F)dr (18) 

and introducing the so-called Fukui function f(r) by the Maxwell 
relation 

*»-[i£)],-[^L 
As is obvious from the last equation, the Fukui function is strongly 
related to the electron density of the frontier orbitals and permits 
one to draw contour maps for reactivity tendencies within a 
molecule. Moreover, Klopman's initial treatment of chemical 
reactivity is reinstalled. It turned out to be difficult to calculate 
local hardnesses*1 n because of highly complicated computational 
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(32) Pearson, R. G. lnorg. Chem. 1988, 27, 734-740. 
(33) Pearson, R. G. Chem. Brit. 1991, 444-447. 
(34) Nalewajski, R. F. J. Am. Chem. Soc. 1984, 106, 944-945. 
(35) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050. 
(36) Yang, W.; Parr, R. G.; Pucci, R. / . Chem. Phys. 1984, Sl, 
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expressions, and so alternative methods have been chosen to in­
vestigate local properties in molecules. The molecular softness 
S is defined39 as half the inverse of the total hardness i\ 

5=1/2»; (20) 

whereas the local softness is given by the product of the Fukui 
function and molecular softness according to 

s(r) = Sf(F) (21) 

It is important to note that local softness and hardness values are 
not simply reciprocals of each other. The usefulness of the last 
definition has been shown in the course of electronegativity 
equalization calculations40"42 in order to compute effective elec­
tronegativities as well as atomic charges. Typically, for the in­
vestigation of small molecules, various local softnesses are obtained 
with the help of so-called condensed Fukui functions,43 based on 
gross Mulliken charges q such as 

f+= qt(N + \) - qi(N) (22) 

f,r = q,(N) ~ q,(N ~ D (23) 

/ , ° - 1A[Ii(N+ l)-qi(N-\)] (24) 

This allows the estimation of reactivities for nucleophilic, elec-
trophilic, and radical attacks. The language of this kind of 
theoretical chemistry is quite mature,24,44 and all important re­
lations between global and local hardnesses and softnesses as well 
as more elaborate definitions of so-called hardness and softness 
kernels rj(r,rr),s(r,r'), true reciprocals of each other, have already 
been developed. Quite recently, even higher-order derivatives were 
presented.45 Applications for small molecules have been pub­
lished46,47 analyzing possible reaction paths by looking at the 
condensed Fukui functions. An overview of the possible calcu-
lational routes can be found in ref 48. 

A slightly different approach was introduced by Nalewajski 
et al. who pragmatically set up an atom-in-a-molecule hardness 
matrix n whose diagonal elements are given by the formula of 
Parr and Pearson (eq 6), whereas the nondiagonal entries are 
approximated semiempirically, finally giving access to normal 
displacement modes in electron populations. Moreover, reactive 
tendencies within molecules have been analyzed, especially those 
incorporating donor-acceptor contributions.49,50 

Keeping all this in mind, the theoretical notation of absolute 
hardness and its consequences for crystal (solid-state) chemistry 
compared to molecular chemistry seems to have been neglected. 
With the exception of an early paper about structure diagrams 
that involves a Philips-Van Vechten-like description51 of the solid 
state, on the one hand,52 and the theoretical analysis of a bulk 
metal's Fukui function that comes out to be the normalized local 
density-of-states at the Fermi level,39 on the other, a hardness or 

(39) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 
6723-6726. 
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(41) Mortier, W.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986,108, 
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1987, 86, 5063-5071. 
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(44) Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554-2557. 
(45) Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94, 5559-5564. 
(46) Lee, C; Yang, W.; Parr, R. G. / . MoI. Struct. (THEOCHEM) 1988, 

163, 305-313. 
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(49) Nalewajski, R. F.; Korchowiec, J.; Zhou, Z. Int. J. Quantum Chem. 

1988, 22, 349-366. 
(50) Nalewajski, R. F. Int. J. Quantum Chem. 1991, 40, 265-285. 
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reactivity theory for solid-state compounds (infinite molecules) 
is unknown. This is very astonishing as there are already col­
lections of empirical facts concerning the catalytic properties of 
solid surfaces, for example, which are surely a strong sign of acidic 
and basic material properties.53 

The definition of the condensed Fukui function as a working 
tool is based on definitions of Mulliken charges, which themselves 
are calculated via overlap populations. In "conservative" molecular 
quantum mechanics, one typically deals with a well-known and 
still improving set of Gaussian- or Slater-type functions where 
the success and failure of the Mulliken overlap population scheme 
is well investigated. In contrast, in solid-state quantum mechanics, 
because of the quite different computational problems that had 
to be solved, a large set of most different methods was invented, 
typically working with sets of various basis functions such as plane 
waves, Gaussians, analytical atomic partial wave expansions, 
spherical waves, Hankel- and Bessel-type functions (often energy-
and potential-dependent), and so on. To formulate a reactivity 
and acid-base theory that is as general as possible, we will cir­
cumvent any difficulties due to different degrees of basis set 
orthogonality and therefore avoid the use of overlap populations 
and Fukui functions. 

Moreover, using such an Ansatz one immediately loses one of 
the Fukui function's limitations, namely, it being an intrinsically 
relative measure of reactivity. As already said above, local 
hardness h(r) and local softness s{r) are not true reciprocals of 
each other. The latter number is calculated indirectly by mul­
tiplication of S (global value) wither) (local value). In addition, 
the Fukui function f(r) only measures differences in electron 
occupations at the frontier orbitals without telling anything about 
their bonding or antibonding character. This can, of course, be 
done "by hand" while investigating the transparent MO order of 
a small molecule. In the solid state, however, the derealization 
of all levels and the energy spectrum as a consequence make this 
a quite difficult undertaking. 

From a heuristic standpoint, therefore, we will break down the 
solid-state ensemble's hardness directly into atomic (or bonding) 
contributions. As atoms condense to a solid with its given crystal 
structure, all absolute electronegativities equilibrate because of 
the governing consequences of density-functional theory. As has 
been pointed out earlier,54 the electronegativity is the negative 
of the chemical potential, and it is the driving force of chemistry 
to equilibrate chemical potentials and to transfer electrons. At 
this point, chemical intuition asks for different chemical reactivities 
within the solid. Although all chemical potentials have been 
equilibrated, the atoms will still retain different characteristics 
while being chemically attacked. In other words, their resistance 
toward a global change in the electronic system will change from 
atom to atom, and that is exactly what we are going to look for. 

3. Reactivity, Acidity, and Basicity 
A short theoretical outline of the concept for an isolated 

molecule may be taken from the Appendix. However, the fol­
lowing description for the solid state should be self-explanatory. 

3.1. Reactivity within the Solid State. According to Bloch's 
theorem there is a reciprocal vector k for a wave function that 
fulfills Schrodinger's equation such that a translation by a real 
lattice vector t is equivalent to the multiplication with a phase 
factor 

4>j(k,r + 7) = erk%(k,r) (25) 

j is the "band index". If the Bloch function is constructed as a 
linear combination of atomic centered orbitals, we can write 

4>}(k,7) = 2 > * f E L c^hvtf -R-T) (26) 
T Ru. 

u€R 

(53) Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and 
Bases; Elsevier Science Publishers: Amsterdam, 1989. 

(54) Donnelly, R. A.; Parr, R. G. / . Chem. Phys. 1978, 69, 4431-4439. 
(55) Hall, G. G. Proc. R. Soc. London 1952, A213, 113-123. 
(56) Manning, P. P. Proc. R. Soc. London 1955, A230, 424-428. 
(57) Ruedenberg, K. Rev. Mod. Phys. 1962, 34, 326-376. 

Dronskowski 

where R runs over all atomic positions in the primitive unit cell 
and t over all its translations. 

Consequently, the important difference between the molecular 
and the solid-state case is that we have a spectrum of different 
states in energy which vary with k, in contrast to the discrete 
energy levels of the molecule. Therefore, a well-suited description 
is an energy-resolved fc-dependent (spectral) density-of-states 
matrix, here restricted to the non-spin-polarized case, 

PJtfo = X>/;,(fc)c„/£W< - tj) (27) 

The total electronic energy (equivalent to the total energy within 
EH theory59'60) up to the Fermi energy is given by 

E- J <&rfd(L Lk,w)+E£*[v>'*)]} 
RH R' v 

u£R v€R' 
(28) 

Ji characterizes the real parts of the complex off-diagonal entries. 
To simplify the notation, we average the ^-dependent density-
of-states matrix over the whole Brillouin zone and get 

J d W V ( a ) = P„,(0 (29) 

Thus, the total electronic energy is rewritten as 

E - EE{fv»di+E E J" Vwoi df} 
R u R' v 

uSR ?£/?' 
(30) 

assuming the exchange integrals h to be potentially energy-rfe-
pendent. As in a molecular case, the first part of the formula is 
centered at the atoms R while the second part represents the bonds 
within the crystal. By using the three-point finite-difference 
approximation (eq 14) the absolute hardness of a crystal is written 
as 

V~\{E+ + E-)-E? (31) 

- ̂ EEiP V.« * + EE.fVW')] d<} 
*• R n R' v 

nSR P€R' 
+EEiTv^) *+£EJ"vw>] <*<}] 

R u R' v 

~ E E i P V V O <*< + E E J"**^[V«)] de} (32) 
Ru R' v 

2j%pj<) de) + ££±( SXmM d<+ 
R' i/ * 

/ V W * ) ] ^ - 2 / ' V w O l d<)| (33) 

where the integration in energy is to be performed for the N -
1 case (up to «p), for the N case (up to t°), and for the N + 1 
case (up to «p). 

It is clear that the crystal's hardness is given as a sum90 of what 
is to be defined as an atomic reactivity increment %R 

(58) Koopmans, T. Physica 1933, I, 104-113. 
(59) Hoffmann, R.; Lipscomb, W. N. J. Chem. Phys. 1962, 36, 

2179-2189. 
(60) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397-1412. 
(61) Baird, N. C. Tetrahedron 1970, 26, 2185-2190. 
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V = L£R 
R 

(34) 

where the definition of the absolute atomic reactivity increment, 
which is an energy value measured in eV, is formulated as 

**s L | ( J X ^ W * + J X ^ w *< -

2 j 4 t o o <u) + £ r t J \+,*[/ye)] d, + 
R' u * 

SXJi[P^)] d e - 2 j * / t ° ^ [ / » ] d«) j (35) 

The reader might recognize that this definition of the £R incor­
porates sums and differences of so-called atomic Hamilton pop­
ulations. Compared to the common overlap population S111P111, 
which adds up to the total number of electrons if integrated over 
all occupied electronic states, the Hamilton population h^J3^ adds 
up to the total electronic energy, as already mentioned before. 
Only within EH theory is there a linear relationship between them, 
based on the approximation of Wolfsberg and Helmholz62 

(36) 

where AT is a proportionality constant of the order 1.75. Moreover, 
in eq 35 the Hamilton populations both combine atomic (terms 
1 to 3) and bonding parts (terms 4 to 6). We could call this a 
gross increment. However, if we artificially "cut" all bonds from 
an atom, its atom-centered Hamilton populations will then form 
a net atomic reactivity increment: 

* * » . s L;( S" *X.wd< + JX*«.wde -

2JlhlPJt)d() (37) 
n€R 

If we only focus on a bond's reactivity, the investigation of the 
absolute bond reactivity increment of the bond between the atoms 
R and R' would be of interest, and would read 

I W?',bond ' 

n€R v€R' 

S%mP,M &-2$\MP>M)] &) (38) 

The relation between the gross, net, and bond increments is simply 

£/? S {/!,net + £-ffi.R',bond ( 3 9 ) 
R' 

As a measure of energy, the value of an absolute reactivity in­
crement will typically lie in a range of some meV, both below and 
above the energy zero. Negative values indicate reactive atoms 
or bonds because of their task in decreasing the crystal's hardness. 
On the contrary, positive values can be found at inert parts of 
the structure. If one had a high computational accuracy, those 
values could be compared between different structures and dif­
ferent compounds. Additionally, for reasons of convenience we 
introduce the dimensionless relative atomic reactivity index aR, 
given by the expression 

{« lmi 

smin — SIT 
(40) 

where all indices are normalized between "0" (most inert atom) 
and "1" (most reactive atom), and their symbols have been taken 

(62) Wolfsberg, M.; Helmholz, L. J. Chem. Phys. 1952, 20, 837-843. 

to be upper case Greek letters instead of lower case. Because of 
the normalization, they are not transferable between different 
compounds. 

To simplify the calculations we may assume the exchange 
integrals to be explicitly energy-independent. Thus the simplified 
absolute atomic reactivity increment %R will read 

i* • L§*«X JX(O d« + J"X(0 d<-

2 JXW d«) + L L k X J**[*»] de + 
R' v * 

vER' 

^X[PJt)] d«-2j**[P„,(€)] de)J (41) 

Introducing a "frozen band approximation" which is the solid-state 
analogue of Koopmans' theorem,58 we can further simplify the 
integrals' differences to 

** ~ L |*«.( J X w d<+ J X w d* + JX(O d<+ 

H£R\ 

JX(O d< - 2 JX(O d< - 2 JX(O d«) + 

~~8? v 2 
it + L L ^ X J'^tVO] de + J**[P„(0] dc 

J^^Wldc+Jf**[J>,1,(0]d«-

2J,**[/',„(c)] d e - 2 j ^ [ ^ ( , ) ] de)j (42) 

^LKXJXW d e-JX ( e ) d e) + 

L L V( J > t V 0 ] d« - J>[PM„(0] d«)} (43) 

This simplified atomic reactivity increment is closely related to 
the molecular one (see Appendix), replacing the single states by 
a state spectrum. It turns out to be a sum of (i) the product of 
simple EH Hamiltonians and the difference of two "on-site" 
electron charge densities, i.e., an energy-weighted difference of 
two atomic charge density differences; and (ii) the product of 
"bonding" exchange integrals and the difference of all "off-site" 
charge density differences, while going first from eF to t} and then 
from t+ to «p- Simplified reactivity increments excluding bonds 
(net) or excluding atoms (bond) are constructed in a similar 
manner. 

A simple graphical visualization of the increments' meaning 
and the underlying partitioning technique described above is 
depicted in Figure 2. In the picture one can find a highly 
schematical representation of a total energy E versus electron 
number N curve of a solid-state material composed of two atoms, 
say A and B. Using the relative energies in the scheme, AB has 
an absolute hardness of i? « 1Zz(E+ + ET)-E0= >/2(-6 - 10) 
+ 9 = 1 (in arbitrary energy units) which is positive since AB 
is chosen to be stable. The broken line separates the gross atomic 
energies of atom A (upper part) and atom B (lower part) from 
each other. For each electron number N, these subenergies, which 
include both "on-site" and "off-site" terms since they are gross 
values, add up to the total energy of the crystal AB. Assuming 
a "frozen band approximation", the gross reactivity increments 
are £A = ' / 2 H - 2) + 5 = 2 and | B = 72(-2 - 8)i + 4 = - 1 , which 
means that atom B turns out to be more reactive than atom A 
because B has the lower increment. Actually, both increments 
add up to the total hardness, according to £A + £B = 2 - 1 = 1 
= T;, as expected. 
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Number of 
electrons 

/ / N 

Figure 2. Schematical scheme of the total energy partitioning and its 
relationship with gross atomic increments of reactivity, electrophilicity, 
and nucleophilicity. The lower curve (bold line) represents the course 
of the total energy (left axis, arbitrary units) as a function of the electron 
number (right axis) of a solid-state material AB composed of two dif­
ferent atoms A and B. The total energies E+, £°, Er belonging to electron 
numbers N+, N0, N~ are emphasized. The upper curve (broken line) 
divides the total energy into contributions of atom A (upper region) and 
atom B (lower region), i.e., into their atomic energies E+

K#, £°A,B> and 
£~A,B-

The corresponding definition for the relative simplified atomic 
reactivity index ER is 

Z. SR ~ Smax 

smin Srr 
(44) 

being principally the same as the one for the nonsimplified values. 
Trivially, atom B would have a reactivity index of HB = 1» whereas 
atom A would have SA = 0. 

It should be emphasized that the above definitions can be used 
with an arbitrary basis set (plane waves, Gaussians, Hankels, etc.), 
although an atom-centered representation would be more com­
fortable because of a more convenient interpretation of the gross 
atomic, net atomic, and bond increments or indices. Moreover, 
using an atom-centered representation, the theory is applicable 
to surfaces, too. Whether a surface is computationally modelled 
by a cluster approach or by a two-dimensional band structure 
calculation (infinite slab), the partitioning of the absolute hardness 
into reactivity increments (eq 34) can easily be rewritten into a 
double-partitioning, like 

R 
Rfz surface 

$R + 
R' 

R'ebulk 

IK (45) 

thus allowing the division between surface atoms and bulk atoms. 
A local approach to surface reactivity is installed in this way. 

To summarize, we have introduced a quantitative measure of 
local reactivity within a crystal. A high positive value of £R 

indicates stabilization of the crystal structure by making the crystal 
resistant to changes in the electron count which could occur by 
the attack of a reagent. A small or even negative value indicates 
an intrinsic destabilizing atom or bond. 

3.2. Acidity and Basicity within the Solid State. Let us estimate 
what the acid-base property of an atom in a structure is. If one 
imagines an insertion reaction of a species into the sublattices of 
a structure or a reaction where the crystal dissolves into sublattices 
during its reaction with a nucleophilic or electrophilic solvent, one 
way of probing the acid-base behavior would be to look at the 
initial energy perturbations of the crystal that will arise. We 
therefore focus on an arbitrary reaction with a nucleophilic reagent 
(nr) 

nr + [crystal]0«-» [nr]8+-[crystal] *" 

where the crystal reacts as an electrophile by accepting partial 
charge, and at the reaction with an electrophilic reagent (er) 

er + [crystal]0 *-» [er]*"-[crystal]s+ 

where the crystal reacts as a nucleophile, i.e., donating partial 
charge. Dividing the arising energy perturbations into atomic 
contributions can be done by defining the electrophilic energy 
change, A£ele, which is a sum over all absolute atomic electro­
philicity increments fjf, both measured in eV, given as 

(46) I * AEa° ~ E- -E0 = £ $ 

whereas the nucleophilic energy change, A£»uc, is defined as a 
sum over all absolute atomic nucleophilicity increments £™c, 
measured in eV, too: 

AEm E+-E0= I f / 
R 

(47) 

In the example of Figure 2, the energy changes would come out 
to be AEa° = -10 + 9 = -1 and AF1"0 = -6 + 9 = 3 (energy 
units). 

The corresponding relative and dimensionless values, symbolized 
using upper case Greek letters again, are defined as 

Eg' = 
tele _ fcele 
SJ? Smax 

tele _ £i 
Smin Si 

:ele 
max 

and 
fcnuc _ tni 
SR Cir 

fcnuc _ fn 
Smin Sn: 

(48) 

for the indices of electrophilicity and nucleophilicity, respectively. 
Typically, because electron density is being inserted into 

high-lying empty states, the electrophilic energy changes will come 
out as negative energies, and so do the corresponding electro­
philicity increments (energy gain). On the other hand, because 
of electrons being removed from hitherto filled states, the nu­
cleophilic energy changes as well as the corresponding increments 
will appear as positive energies (energy loss). The value of the 
nucleophilic energy change will be larger than the absolute one 
of the electrophilic energy change—a direct consequence of the 
positive hardness of a stable system. 

In any case, compared to the energy zero (!), the smaller the 
increments the more reactive the atoms (bonds). Therefore, the 
electrophilic or acidic character of an atom (bond) will increase 
if the electrophilicity increment acquires a larger negative value, 
and atoms (bonds) will decrease in acidity if their electrophilicity 
increments become less negative or even positive. Consequently, 
the nucleophilic or basic character of an atom (bond) will increase 
when the nucleophilicity increment becomes less positive or even 
negative, and atoms (bonds) will decrease in basicity if their 
nucleophilicity increments become more positive. In short, the 
more negative or less positive the increment, the more reactive, 
acidic, or basic the atom (bond). However, for convenience the 
relative indices for electrophilicity (acidity) and nucleophilicity 
(basicity) are normalized in such a way that the less acidic or basic 
atom (bond) gets the "0" value, whereas the most acidic or basic 
atom (bond) can be found by looking for the " 1 " value. 

There is a simple relation between the absolute hardness t) and 
the electrophilic and nucleophilic energy changes, which can be 
derived from the formula 

Y2(E
+ + ET) - E0 

« Y2(E- -E0 + E+ -E0) 

c) 

(49) 

(50) 

(51) =» y2(A£cle + <\En 

In fact, from the electrophilic and nucleophilic energy changes 
in Figure 2, one would calculate an absolute hardness of AB 
according to v = '/2(A£*le + A£nuc) = 7 2 ( - l + 3) = 1 which 
was also already found before using eq 14. Therefore, as ri, A£*le, 
and A£™c incorporate the same sum £ « while being broken down 
into subcontributions, a similar formula holds for the absolute 
atomic increments 

(R = Vi(St + fin (52) 
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but not for the relative indices. By looking at eq 52, an alternative 
designation for the atomic reactivity increment could be atomic 
amphoteric increment. 

The explicit formulas for $ e and for ^uc form only one of two 
parts of the absolute atomic reactivity increment. The absolute 
atomic electrophilicity increment %$ is 

L L ( J " V w ) ] d*- /**;^[v«)] d«)} (53) 
R' 

^R' 

where we assume energy-dependent exchange integrals h for 
universality. Freezing these to fixed values and using the frozen 
band approximation as before, we may calculate an absolute 
simplified atomic electrophilicity increment corresponding to the 
formula 

^=ZkJXw* « + YYh,„f «*&„(*)] &} 
u€R 

R' v 
"ER' 

(54) 

This expression again involves two parts that arise from products 
of exchange integrals with differences in electron charge densities, 
both "on-site" and "off-site" terms, while going from 4 to t>, i.e., 
from the neutral crystal to the slightly negatively charged one. 

The definitions of the nucleophilicity quantities are of the same 
kind. For the absolute atomic nucleophilicity increment, we arrive 
at 

n£.R 

L E ( J ^ O W * 1 d«- J"*C*[Ve)] de)} (55) 
R' » 

v£R' 

with principally energy-dependent exchange integrals h, whereas 
the simplified absolute value is given by 

£r=-ZhSfw d<+LL * J**iv«>] d<) 
H R' v 

nBR i>€R' 

(56) 

Again, from Figure 2 the partitioning of the electrophilic and 
nucleophilic energy changes of AB can be easily visualized. For 
the electrophilicity increments of atoms A and B, we arrive at £5[e 

= -2 + 5 = 3 and f|le = -8 + 4 = -4. Therefore, atom B is the 
more acidic atom since it has the lower increment. For _the 
increments of nucleophilicity we find ££* = -4 + 5 = 1 and £B

UC 

= -2 + 4 = 2, stating that atom A is the more basic one by having 
the lower increment. Both the increments of electrophilicity and 
nucleophilicity add up to the corresponding energy changes, i.e., 
~?A + TB'' = 3 - 4 = -1 = AEa° and &uc + |nB

uc = 1 + 2 = 3 = 
AE""'. 

For completeness the definitions of the relative simplified atomic 
indices are 

?ele : 
*-R • 

«le _ Ml 

6 :e!e . 
min 

tele 
s max 

and 
fcnuc _ fcn 

(57) 

By inserting the results derived from Figure 2, the electrophilicity 
indices would simply come out to be O for atom A and 1 for atom 
B. In the case of nucleophilicity, we would find the indices to 
be 1 for atom A and O for atom B. 

This concludes the definitions of the acid-base indicators for 
the solid state. We mention that they are not restricted to a 
specific kind of solid-state material. Whether the compound is 
metallic, semiconducting, or insulating is not, in principle, im­
portant to these definitions. A double-partitioning such as in eq 

45 to distinguish between surface atoms and bulk atoms is 
straightforward. Thus, acidity and basicity of surface atoms may 
also be studied easily. 

At the end of this section we would like to emphasize that the 
above definitions which include singly charged species do indeed 
correspond to the Lewis acid-base theory and its distinction from 
redox chemistry. Within Lewis theory this distinction is based 
on the truly formal assignment of (i) a changing oxidation state 
of an element within a compound (redox case) on the one side 
and (ii) the spatial redistribution of partial charge on atoms in 
a compound (acid-base case) on the other. Of course, using a 
quantum-mechanical language the concept of formal oxidation 
states can hardly survive. In fact, we may expect to find only small 
perturbations in the electron densities which justify our consid­
erations, i.e., treating acidity and basicity using positively and 
negatively charged entities in the calculations. It should be noted 
that the problem of dividing acid-base from redox processes has 
been elucidated already more than 50 years ago in the framework 
of Usanovich's theory.63 This acid-base theory explicitly includes 
redox chemistry as a subclass of acid-base chemistry by simply 
regarding the electron as the standard base. Unfortunately, those 
ideas have not become very common, probably because of language 
barriers, and the usual prejudices against things Russian. 

3.3. Accuracy, Limitations, and Prospects. There are several 
theoretical aspects that have to be investigated in order to evaluate 
the accuracy and limitations of the reactivity and acid-base in­
dicators presented so far. 

First, the calculation of positively and negatively charged en­
tities, assuming that no structural relaxation takes place, is based 
on a rigid band approximation. This will always lead to a small 
error in the total energy calculation. However, reliable compu­
tational simulation techniques for atomic displacement relaxation 
are only available for molecules,64 and "straightforward solutions" 
for crystals are out of question.65 Moreover, it is impossible to 
improve the three-point finite-difference formula by choosing 
smaller energy differences in the stepwise electron count since 
fractional occupation numbers (except in the case of an open 
electronic system) are in conflict with the underlying concepts 
of quantum mechanics.30 

Second, the calculation of simplified increments for reactivity, 
acidity, and basicity does not take any electronic relaxation into 
account. Therefore, consequences similar to those of using 
Koopmans' theorem in molecular quantum mechanics, namely, 
too positive ionization potentials and too negative electron affinities, 
must arise. Fortunately, in the present case one might expect a 
high error cancellation rate because of the energy difference 
involved in calculating the total hardness (eq 6). Although hitherto 
neglected correlation effects tend to cancel relaxation errors for 
ionization potentials, they add while calculating electron affinities, 
and it is well known that a simple method such as EH theory does 
particularly badly at calculating the A's (overestimating them). 

Third, the accuracy of the energy parameters within the EH 
tight-binding approach will always remain a problem. Although 
the semiempirical parameters of EH theory already carry 
many-particle effects into the calculations (since they are derived 
from experimental data), too large hardness values will appear. 
This can be tested only in those cases where experimental band 
gaps of semiconductors or insulators are available. The band gap 
is defined as the difference of ground-state energies 

£gap = I- A (58) 

= [E+ -E0)-(E0- E-) (59) 

= 2i, (60) 

and it is simply twice the absolute hardness. Calculations on 

(63) Usanovich, M. Zh. Obshch. KUm. 1939, 9, 182-192. 
(64) Jones, R. O. Angew. Chem. 1991, 103, 647-657; Angew. Chem., Int. 

Ed. Engl. 1991, SO, 630-640. 
(65) WiIIe, L. T.; Vennik, J. J. Phys. A 1985, 18, L419-L422, Ll 113-

Ll117. 
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typical insulators confirm the expected error and its direction. 
[Using the standard values of EH theory as collected by Alvarez6* 
without charge iteration, the band gaps of the highly ionic sodium 
chloride type compounds LiI and LiF, for example, come to around 
15 and 22 eV, in contrast to the experimental values of 6 and 12 
eV.] Therefore, in treating highly ionic compounds with EH 
theory (implicitly neglecting electrostatic contributions to the total 
energy), one may expect a charge iteration67 to improve the energy 
parameters and hardness values significantly. 

Using a more elaborate method including many-particle effects 
with the help of a local density or local spin-density approximation 
should, on the contrary, give more accurate results. Of course, 
it is well known that DF theory fails in calculating reliable band 
gaps for semiconductors. These gaps are typically underestimated 
by around 50 to 80%, while at the same time "overbonding" effects 
are common.23 In the end, this is due to the possible discontinuity 
in the exchange-correlation potential. As has been shown by 
Perdew et al.,68-69 the true band gap 

E»t = «"+'(A0 - ("(AO (6!) 

= A< + A (62) 

is not identical with the energy eigenvalue gap of the ^-electron 
species. The failure comes from the local approximation which 
has its largest errors when the correlation effects are too different 
from the electron gas correlations. Therefore, the failures will 
be larger in semiconductors and insulators than in metals. 
However, considering the fact that absolute hardness is defined 
as an energy difference between ground states of different electron 
number and not as an excitation energy, an accurate value of IJ 
will be obtainable with three subsequent ground-state DF cal­
culations, each for a specific total charge. 

Fourth, we give the generalization of the atomic reactivity 
increment in terms of a DF ab initio framework, specifically 
expressed within LMTO (linear muffin-tin orbital) language in 
the ASA (atomic sphere approximation). The LMTO method70"72 

is the linearized version of the KKR method73-74 where energy and 
potential dependent basis functions are used. One of its out­
standing properties is its possible application to materials composed 
of atoms from any part of the periodic table. Within the ASA, 
where the nonspherical parts of the potentials are ignored, it is 
both computationally and conceptionally very efficient. 

A "frozen-core approximation" (implicitely included in the EH 
calculations of the valence bands as well) allows the separation 
of the total energy into core and valence contributions. Then a 
crystal's valence total energy in the ASA can be expressed as 

EDf[n(r)\ - £««•'"•"*- £ $ ' " d r n ^r)[Wr) + v»{„(?))] + 
R 2 

YpdfnMWnCr)} + £ £ ^ r . (63) 
R R R' \K ~ K I 

including corrections for exchange-correlation and Madelung 
energy. The abbreviations stand for atomic sphere size sR, Hartree 
and exchange-correlation potentials v^, v^, as well as atomic 
charge zR in the sphere at /?.75 The "one-particle energy" 

(66) Alvarez, S. Universitat de Barcelona, unpublished, 1989. 
(67) McGlynn, S. P.; Vanquickenborne. L. G.; Kinoshita, M.; Carroll. D. 

G. Introduction to Applied Quantum Chemistry, Holt, Rinehan and Winston: 
New York, 1972. 

(68) Perdew, J. P.; Levy, M. Phys. Rev. Lett. 1983, 51, 1884-1887. 
(69) Sham, L. J.; Schluter, M. Phys. Rev. Uu. 1983, 51. 1888-1891. 
(70) Andersen, O. K. Phys. Rev. B 1975, 12, 3060-3083. 
(71) Skriver, H. L. The LMTO Method, Springer: Berlin. Heidelberg, 

New York, 1984. 
(72) Andersen, O. K.; Jepsen, O.; Sob, M. In Electronic Band Structure 

and Its Applications; Yussouff. M.. Ed.; Springer: Berlin. Heidelberg, New 
York, 1986. 

(73) Korringa, J. Physica 1947. 13, 392-400. 
(74) Kohn. W.; Rostoker, N. Phys. Rev. 1954, 94, 1111-1120. 

Figure 3. Projection of the crystal structure of K2Ti4O, along the [010] 
direction. The Ti-O substructure is represented with shaded octahedra, 
and the K atoms are given as black circles. The K atoms lie in y/b = 
0 (center) and in y/b = '/2 (left and right). The edges of the unit cell 
are emphasized with broken lines. 

£one-particie repreSents the sum of the eigenvalues which add up to 
the total energy only in simplified methods such as EH theory. 
As any of the above terms includes again the sum over all sites 
£* . the DF LMTO ASA atomic reactivity increment reads 

«BF • I* + fcl(£Jf|Aii(7)l + £ * W ) ) + + (SJf[AzI(T)I + 
£5?<*JW))1 - (£)fjAfi(r)| + £^(rR/r))° (64) 

where we have shortened the notation for the atomic centered 
correction terms of exchange-correlation and Madelung energy. 
Therefore, a generalization is easy, and the other acid-base in­
crements change in a similar manner. 

Fifth, we would like to emphasize that it should be interesting 
to discuss those correlation effects leading to localization phe­
nomena such as magnetism or metal-insulator transitions76 with 
the chemical language of reactivity, acidity, and basicity. Keeping 
in mind that the three-point finite-difference formula for the 
absolute hardness involves, if applied to a semiconductor or metal, 
an artificial insulator-metal transition, the importance of corre­
lation (which comes into play when the bandwidth W is much 
smaller than the effective Coulomb interaction U) is obvious. 
Fortunately, the self-interaction corrected local spin-density ap­
proximation SIC-LSD29 is believed to be able to describe these 
effects in a satisfying way. 

Finally, Gazquez et al. have already reported the close rela­
tionship of the spin density and the Fukui function48 in the in­
vestigation of molecules. In particular, a linear correlation between 
spin-flip energy and absolute hardness was discovered. Applied 
to the solid state, a possible direct link between acid-base and, 
for example, magnetic behavior of atoms in crystal structures 
presents an interesting challenge. 

4. Application 
Here is a beautiful example of an acid-base solid-state synthesis. 

As has been shown by Rouxel in two recent publications concerned 
with the design and chemical reactivity of low-dimensional solids,4-5 

the topochemical reaction of K2Ti4O9 toward K2Ti8On that was 
first performed by Tournoux et al.77 is a representative acid-base 

(75) Andersen, O. K.; Jepsen, 0.; Glotzel, D. In Highlights of Con­
densed-Matter Theory; Bassani, F., et al., Eds.; North-Holland: New York, 
1985. 

(76) Mott, N. F. Metal-Insulator Transitions; Taylor & Francis: London, 
New York, 1990. 
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T«ble I. K-O and Ti-O Distances (pm) up to 310 pm (K) and 220 
pm (Ti) in K2Ti4O," 

Figure 4. Projection of the Ti-O substructure of K1Ti8O17 along the 
[OTO] direction. The Ti-O octahedra have been shaded whereas the K 
atoms have been omitted for clarity. The edges of the unit cell are 
emphasized with broken lines. 

reaction of a layered solid-state material. The sheet structure of 
K2Ti4O9 (Figure 3) contains zigzag Ti -O structural units, made 
up of four edge-sharing TiO6 octahedra which connect to neigh­
boring entities by sharing corner O atoms. A single Ti -O unit 
is furthermore linked by common edges with similar blocks above 
and below. There are also K+ ions located in channel-like voids 
between the sheets. 

Tournoux et al. discovered that the K+ ions can be completely 
exchanged by H 3O+ ions while treating K2Ti4O9 with 3 N nitric 
acid at room temperature. At about 60 0 C the hydrolysis product 
begins to emit water, accompanied by an internal protonation of 
the oxygen atoms, leading to - (OH) groups facing each other. 
At even higher temperatures further H2O elimination may take 
place, leading to the sealing of neighboring Ti-O polyhedral blocks 
and resulting in the formation of K2Ti8Oi7. Using slightly different 
conditions, a transformation to the so-called TiO2(B) structure 
can also be achieved. Figure 4 shows a projection of the crystal 
structure of K2Ti8Oi7 (closely related to K3Ti8Oi7).78 The strong 
relationship between this structure and that of K2Ti4O9 is im­
mediately clear. During the hydrolysis the basic framework is 
not destroyed. The only difference lies in the additional linking 
of the Ti-O ribbons by a shared angular O atom. In the crystal 
structure of TiO2(B) (isotypical to VO2 ,7 ' not shown here), ad­
ditional O atoms in the middle of the polyhedral unit are shared, 
too. 

Based on these experimental facts, Rouxel came to the con­
clusion that, "The principle of the mechanism is based on a se­
lective protonation of sites according to a gradation of their 
basicity." He further stated that, "The angular oxygen atoms 
represent the most basic sites [...]. They represent active sites 
to be protonated."5 

We will measure the degree of basicity of all the O atoms by 
calculation and compare it to the available structural implications. 
The most basic O atom, located at the corner of the Ti -O unit, 
should leap to the eye upon looking at the atomic nucleophilicity 
increments or indices. However, if the gradients in atomic basicity 
should not turn out to be important, proton conductivity would 
result as a prediction. In addition, we will test Rouxel's theory 
on how to change the basicity of the angular O atom: "Now if 
we could change Ti4+ by Nb5 + , keeping the same geometry, the 
basicity of oxygen will considerably decrease." With this in mind, 
we undertood the calculations on K2Ti4O9 and on a hypothetical 

(77) Marchand, R.; Brohan, L.; Tournoux, M. Mater. Res. Bull. 1980.15, 
1129-1133. 

(78) Watts, J. A. J. Solid Slate Chem. 1970. /, 319-325. 
(79) Theobald, F.; Cabala, R.; Bernard. J. J. Solid Stale Chem. 1976. 17. 

431-438. 

K(l)-0(8) 
-0(9) 
-0(6) 
-0(6) 

Ti(l)-0(9) 
-0(3) 
-0(8) 
-Od) 
-0(2) 

Ti(3)-0(6) 
-0(3) 
-0(9) 
-0(5) 

O d I 

277 
289 
303 
308 
169 
1X9 
194 
196 
21« 
167 
197 
202 
209 
219 

(2X) 
(2X) 
(2X) 
(2X) 

(2X) 

(2X) 

K(2)-0(5) 
-0(7) 
-0(6) 

Ti(2)-0(5) 
-0(7) 
-0(2) 
-O(l) 
-0(4) 

Ti(4)-0(8) 
-0(7) 
-0(4) 
-0(2) 
-0(4) 

265 
2X7 
308 

173 
189 
I9X 
212 
214 
179 
1X1 
19X 
204 
208 

(2X) 
(2X) 
(2X) 

(2X) 

(2X) 

"Owing to the limited resolution of the original structure refine­
ment81 of TI2Ti4O9 (because of instrumental techniques, i.e., integrat­
ing Weissenberg film method), the standard deviations of the intera­
tomic distances lie around 4 pm. As above distances were calculated 
with the use of the lattice constants of K2Ti4O9

82 and the positional 
parameters of Tl2Ti4O9"' because of isotypism, the errors in the real 
interatomic distances could he even slightly larger. 

T.ble Il 

atom 

EH Energy Parameters for K2Ti4O9 and 

orbital H„(eV) f, C1 

"K2NbTi3O9-

f2 C2 

K 

Ti 

Nb 

O 

4s 
4p 
4s 
4p 
3d 
5s 
Sp 
4d 
2s 
2p 

-4.34 
-2.73 
-8.97 
-5.44 

-10.81 
-10.10 
-6.86 

-12.10 
-32.30 
-14.80 

0.87 
0.87 
1.08 
0.68 
4.55 
1.89 
1.85 
4.08 
2.28 
2.28 

0.4206 1.40 0.7839 

0.6401 1.64 0.5516 

"The coefficients used in the double-f expansion of the d orbitals are 
designed with C. The f s are the Slater-type orbital exponents. 

"K2NbTi3O9" with the help of the atomic energy partitioning 
technique described before. The role of bond reactivities and 
acid-base properties in different crystal structures will be the 
subject of forthcoming papers.80 

4.1. Calculational Details. The crystal structure of K2Ti1O9, 
isostructural to Tl2Ti4O9,81 is characterized by a monoclinic unit 
cell, space group C2/m (no. 12), containing four formula units, 
and having dimensions of a = 1825 (1) pm, b = 379.1 (1) pm, 
c = 1201 (1) pm, and /3 = 106.2 ( I ) 0 , 8 2 with 15 nonequivalent 
atoms in the cell. For the electronic structure calculations this 
cell was reduced to the standard primitive triclinic one in space 
group /M (no. 2), containing two formula units and having cell 
dimensions of a = 1201 pm, b = 932 pm, c = 379.1 pm, a = 
101.735°, 0 = 90°, and y = 106.048°. In order to avoid confusion, 
the atom labeling, however, was taken to be the same as in the 
original crystal structure communication.81 To support the 
structural discussion, all interatomic distances were recalculated83 

using the original data reported, and the closest K-O and Ti -O 
bond lengths are given in Table I. The average Ti -O distances 
within the octahedral units are 193 pm at Ti(I), 197 pm at Ti(2), 
199 pm at Ti(3), and 195 pm at Ti(4), in satisfying agreement 
with a "theoretical" T i (+IV)-0 bond length that can be calculated 
using Shannon's effective ionic radii.84 [These radii are known 
to be additive, reproducing the interatomic distances if the in­
fluence of the coordination numbers (CN) is included.] Using 
rTi(+|v). CN-6 = 60.5 pm and Z-OHi). CN-6 = '40 pm, the expected 
Ti -O bond length is a little bit larger (200.5 pm) than the ex­
perimental one. Interestingly, taking the value for the Nb cation 

(80) Dronskowski, R.; Hoffmann, R. Inorg. Chem.. in press. 
(81) Verbaere, A.; Tournoux, M. Bull. Soc. Chim. 1973, 4. 1237-1241. 
(82) Dion, M.; Piffard, Y.; Tournoux, M. J. Inorg. Nucl. Chem. 1978, 40. 

917-918. 
(83) Busing, W. R.; Masten, K. D.; Levy, J. A. Program 0RFFE-3. 

ORNL-TM-306; Oak Ridge National Laboratory: Oak Ridge, TN, 1971. 
(84) Shannon, R. D. Acta Cryst. 1976, A32. 751-767. 
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Table III. EH Total Energies and Absolute Hardnesses of K2Ti4O9 
and "K2NbTi3O9" for Different Valence Electron Counts0 

Table IV. Reactivity, Electrophilicity, and Nucleophilicity 
Increments and Indices (Gross Values) for K2Ti4O9 

compound electrons £(eV) l ( e V ) 

[K2Ti4O9I3+ 

[K2Ti4O9]2+ 

[K2Ti4O9J
+ 

[K2Ti4O9]0 

[K2Ti4O9]-
[K2Ti4O9]

2" 
[K2Ti4O9]3" 

["K2NbTi3O9"]+ 
["K2NbTi3O9"]0 

["K2NbTi3O9"]" 

69 
70 
71 
72 
73 
74 
75 

72 
73 
74 

1381.435 
1395.993 
1410.527 
1425.030 
1434.442 
1443.634 
1452.773 

1429.761 
1440.572 
1451.123 

0.012 
0.016 
2.545 
0.110 
0.027 

0.130 

"The electrophilic and nucleophilic energy changes of the neutral 
systems come to for K2Ti4O9: A£tle = -9.412 eV, A£"uc = 14.503 eV; 
for "K2NbTi3O9": A£ele = -10.551 eV, Af™* = 10.811 eV. 

1370 

-1390 

^ -1410 
LLI 

>> 

fc -1430 
C 

LU 

-1450 -

•1470 J L J I I 
69 70 71 72 73 74 75 

Number of electrons N 

Figure 5. Total energy E of the compound K2Ti4O9 as a function of the 
valence electron number N, according to the EH calculations performed. 
The arrow indicates the slight "bend" in the E versus N function. 

/•Nb(+v), CN=6 = 64 pm, the hypothetical Nb-O bond length should 
be only 3.5 pm larger than the Ti-O bond length. Because of this 
marginal difference, we decided with a good conscience to keep 
the geometry of the metal-nonmetal substructure fixed while 
exchanging the Ti(3) atom for a Nb atom in the model calculation 
of "K2NbTi3O9". 

The total number of ^-points was taken to be 16, dividing the 
reciprocal axes into 2, 2, and 4 units, for a*, b*, and c*, re­
spectively. The extended Huckel method's #,,'s were taken from 
the literature,59'66'85-87 and they are given in Table II. No charge 
iterations were performed. Finally, total energy calculations and 
energy partitionings using the EH tight-binding approach88 were 
performed. 

4.2. Results and Discussion. 4.2.1. Absolute Hardness. The 
total EH energies of K2Ti4O9 and "K2NbTi3O9" for different 
electron counts may be found in Table III. A corresponding E 
versus /V function for K2Ti4O9 is given in Figure 5. As expected, 
the total energies decrease continuously with an increasing number 
of valence electrons. In going from the positively charged species 
to the neutral one (left side in Figure 5), the gain in total energy 
by adding one electron is always larger than the corresponding 
ones that arise from forming more and more negatively charged 
species (right side). In molecular language, the absolute values 
of the first ionization potential are larger than the electron affinities 

(85) Alvarez, S.; Mota, F.; Novoa, J. J. Am. Chem. Soc. 1987, 109, 
6586-6591. 

(86) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 
1729-1742. 

(87) Summerville, R. H.; Hoffmann, R. /. Am. Chem. Soc. 1976, 98, 
7240-7254. 

(88) Hoffmann, R. Angew. Chem. 1987, 99, 871-906; Angew. Chem., Int. 
Ed. Engl. 1987, 26, 846-878. 

atom 

K(I) 
K(2) 
Ti(I) 
Ti(2) 
Ti(3) 
Ti(4) 
0(1) 
0(2) 
0(3) 
0(4) 
0(5) 
0(6) 
0(7) 
0(8) 
0(9) 

h 
(meV) 

-10 
-5 

-515 
-230 

-3195 
-36 
503 

1569 
-57 

2529 
146 
-63 
945 
968 

-4 

W 
(meV) 

-7 
7 

-1038 
-486 

-6397 
-113 
-153 
-117 
-281 

-20 
-344 
-151 

-49 
-64 

-199 

tnuc 
«R 

(meV) 

-12 
-17 

9 
27 

7 
42 

1158 
3254 

167 
5078 

635 
25 

1939 
2001 

191 

* R 

0.444 
0.443 
0.532 
0.482 
1.000 
0.448 
0.354 
0.168 
0.452 
0.000 
0.416 
0.453 
0.277 
0.273 
0.443 

—R 

0.002 
0.000 
0.163 
0.077 
1.000 
0.019 
0.025 
0.019 
0.045 
0.004 
0.055 
0.025 
0.009 
0.011 
0.032 

*?nuc 
- R 

0.999 
1.000 
0.995 
0.991 
0.995 
0.988 
0.769 
0.358 
0.964 
0.000 
0.872 
0.992 
0.616 
0.604 
0.959 

Figure 6. Perspective view of the Ti-O substructure of K2Ti4O9, ap­
proximately along the [100] direction. The Ti atoms are given as small 
open circles and the O atoms as large bold circles. The atoms' labels 
directly correspond to Tables IV, V, VI, and VII. 

(positive hardness), typical for a stable system. 
The tendencies found for the different hardness values (i.e., 

different curvature values in Figure 5) for different electron counts 
(Table III) are in accord with Pearson's maximum hardness 
principle.32 The electronic resistance of K2Ti4O9 becomes stronger 
(from 0.01 eV to 0.02 eV) while approaching the neutral, stable 
system that has the highest hardness value of roughly 2.55 eV. 
By adding more electrons the hardness diminishes again (first 0.11 
eV, then about 0.03 eV). For the neutral electron count quantum 
mechanics has optimized all electronic interactions (atomic 
"on-site" and bonding terms) so that stabilizing and destabilizing 
states are separated from each other as far as possible. Actually, 
the neutral system with its highest hardness value can be recog­
nized by the slight "bend" in the E versus N curve in the middle 
of Figure 5. The other hardnesses are already so small that the 
remaining curve segments appear as straight lines. However, we 
can expect the EH hardness values to be too large compared to 
reality (see section 3.3). Therefore, one should keep in mind that 
the "bend" is already a bit overemphasized, and the schematic 
curve in Figure 1 is an overdramatization for pedagogical reasons. 

Because of their intimate relationship, it would be interesting 
to compare an experimental band gap with the calculated hardness 
energy. Because of the high nonmetal content of K2Ti4O9, the 
compound is very likely to be an insulator. Indeed, recent electrical 
studies show K2Ti4O9 to be an electronic insulator (no band gap 
reported).8991 
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Table V. Reactivity, Electrophilicity, and Nucleophilicity Increments 
and Indices (Net Values) for K2Ti4O9 

Table VII. Reactivity, Electrophilicity, and Nucleophilicity 
Increments and Indices (Gross Values) for "K2NbTi3O9" 

atom 

K(I) 
K(2) 
Ti(I) 
Ti(2) 
Ti(3) 
Ti(4) 
0(1) 
0(2) 
0(3) 
0(4) 
0(5) 
0(6) 
0(7) 
0(8) 
0(9) 

IR 
(meV) 

-1 
-1 

-658 
-283 

-4092 
-59 
402 
1549 
-285 
2634 
-122 
-193 
953 
964 

-168 

IR" 
(meV) 

-2 
-2 

-1318 
-571 

-8188 
-128 
-409 
-314 
-746 
-57 
-914 
-412 
-130 
-173 
-541 

Tnuc 

(meV) 

1 
1 
2 
5 
3 
10 

1213 
3411 
176 

5325 
670 
26 

2037 
2101 
204 

-R 

0.392 
0.392 
0.489 
0.434 
1.000 
0.400 
0.332 
0.161 
0.434 
0.000 
0.410 
0.420 
0.250 
0.248 
0.417 

AR 

0.000 
0.000 
0.161 
0.069 
1.000 
0.015 
0.050 
0.038 
0.091 
0.007 
0.111 
0.050 
0.016 
0.021 
0.066 

*?nuc 
AR 

1.000 
1.000 
1.000 
0.999 
1.000 
0.998 
0.772 
0.359 
0.967 
0.000 
0.874 
0.995 
0.618 
0.606 
0.962 

atom 

K(I) 
K(2) 
Ti(I) 
Ti(2) 
Nb 
Ti(4) 
0(1) 
0(2) 
0(3) 
0(4) 
0(5) 
0(6) 
0(7) 
0(8) 
0(9) 

h 
(meV) 

-3 
-2 
-4 
2 

408 
0 
7 
6 

-319 
-1 
34 
-29 
0 
-1 
30 

JeIe 
SR 

(meV) 

-10 
-8 

-260 
-42 

-8009 
-2 
-65 
-25 

-1259 
-3 

-354 
-186 
-2 
-10 
-317 

Tnuc 
?R 

(meV) 

5 
4 

253 
46 

8825 
2 
79 
36 
621 
2 

422 
128 
2 
8 

377 

AR 

0.565 
0.564 
0.567 
0.559 
0.000 
0.562 
0.552 
0.554 
1.000 
0.563 
0.515 
0.601 
0.562 
0.563 
0.520 

AR 

0.001 
0.001 
0.032 
0.005 
1.000 
0.000 
0.008 
0.003 
0.157 
0.000 
0.044 
0.023 
0.000 
0.001 
0.039 

-?nuc 
AR 

1.000 
1.000 
0.972 
0.995 
0.000 
1.000 
0.991 
0.996 
0.930 
1.000 
0.952 
0.986 
1.000 
0.999 
0.957 

Table VI. Reduced Fukui Functions for K2Ti4O9 

atom 

K(I) 
K(2) 
Ti(I) 
Ti(2) 
Ti(3) 
Ti(4) 
0(1) 
0(2) 
0(3) 
0(4) 
0(5) 
0(6) 
0(7) 
0(8) 
0(9) 

A 
0.0000 
0.0010 
-0.0553 
-0.0267 
-0.3402 
-0.0075 
-0.0480 
-0.1184 
-0.0207 
-0.1762 
-0.0402 
-0.0089 
-0.0695 
-0.0724 
-0.0172 

/R 

-0.0008 
0.0008 

-0.1106 
-0.0516 
-0.6800 
-0.0121 
-0.0161 
-0.0124 
-0.0298 
-0.0022 
-0.0366 
-0.0161 
-0.0052 
-0.0068 
-0.0212 

A 
0.0008 
0.0012 
-0.0006 
-0.0019 
-0.0005 
-0.0029 
-0.0799 
-0.2244 
-0.0115 
-0.3502 
-0.0438 
-0.0017 
-0.1337 
-0.1379 
-0.0132 

The hypothetical compound "K2NbTi3O9", although showing 
a larger total energy by about 16 eV, has a much smaller hardness 
value of only 0.13 eV, smaller by a factor of 20 than the one of 
K2Ti4O9. This indicates a truly greater reactivity, but not simply 
because of the fact that the Nb-O bonds still could readjust a 
little, as they are probably too small by 3 to 4 pm. 

4.2.2. Reactivity. The atomic reactivity indices of K2Ti4O9 
and "K2NbTi3O9" represent some kind of averaged measure of 

(89) Pal, S.; Pandey, S. D.; Chand, P. Solid Slate Commun. 1989, 69, 
1203-1206. 

(90) There is a similarity between the additivity analysis presented here 
and a molecular additivity scheme by Harbola, Chattaraj, and Parr, in press 
at the Israel Journal of Chemistry. I am especially grateful to Professor 
Robert G. Parr for sending me a preprint during refereeing. 

acid-base properties (which we will touch on in the next section). 
In Tables IV and V the gross and net atomic reactivity increments 
and indices of K2Ti4O9 are given. For comparison we also cal­
culated the three condensed Fukui functions (Table VI). The 
corresponding gross values for "K2NbTi3O9" appear in Table VII. 
Figure 6 gives a "ball and stick" view of the metal-nonmetal 
polyhedral framework. 

To begin with, using the gross values, both K atoms in K2Ti4O9 
show practically equal reactivity lying at an index value around 
0.44. The Ti atoms follow the reactivity order 

Ti(3) » Ti(I) > Ti(2) > Ti(4) 

The Ti(3) atom which is located at the "end" of the condensed 
octahedra is the most reactive. The O atom reactivities span the 
whole spectrum from 0 to around 0.45, and the order of reactivity 
is 

0(6) > 0(3) > 0(9) > 0(5) > 0(1) > 0(7) > 0(8) > 
0(2) > 0(4) 

Most interestingly, the most reactive O atoms lie around Ti(3), 
which is also the most reactive Ti atom! Obviously, the "last" 
one of the condensed Ti-O octahedra (bottom right in Figure 6) 
forms an "island" of reactivity. The unreactive atoms 0(2) and 
0(4), on the contrary, are "buried" in the very middle of the 
polyhedral framework. We will further investigate this finding 
in the next section of our discussion. 

The influence of all bonds within the structure can be analyzed 
by comparing the gross order of reactivity with the one that can 
be calculated from the net values of reactivity where the bonds 
have been artificially erased; see Table V. Concerning the K 
atoms, nothing important happens. This is a hint that the K atoms 
are inert cations whose bonding is mainly ionic in nature. For 
the Ti atoms the reactivity ranking becomes even more distinct 
between Ti(3) and the other three Ti atoms. Only for the O atoms 
does the order of reactivity show a change at the "top" where 0(6) 
and 0(3) exchange their positions. This is due to the fact that 
0(3) connects both Ti(I) and Ti(3), whereas 0(6) is only con­
nected to Ti(3). Switching these bonds "off" leaves less reactivity 
on 0(6) than on 0(3). 

For the case of "K2NbTi3O9" where the "alien element" Nb 
replaces the Ti(3) atom, we arrive at the following findings. First, 
the K atoms are not influenced. The Ti atoms' and the Nb atom's 
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reactivities, however, have changed remarkably to 

Ti(I) > Ti(4) > Ti(2) » Nb 

Obviously, the acid-base property of the metal atom at the corner 
octahedron (now Nb), has undergone a conversion. Furthermore, 
it is noticeable that the reactivities of the O atoms (except 0(3)) 
have now been smoothed to an average value around 0.55. We 
find no great diversities in the reactivities anymore, and the order 
reads 

0(3) » 0(6) > 0(4) « 0(8) > 0(7) > 0(2) > 0(1) > 
0(9) > 0(5) 

completely rearranging the original one. The influence of the 
single Nb atom on the reactivities is astonishing. 

In analyzing the condensed Fukui functions/0 for comparison, 
we recognize a serious drawback for their utility, since the great 
majority of all values are negative. As can be seen by careful 
inspection of the defining equations (22, 23, and 24), it is inevitable 
that, for example,/0 will be negative for most atoms in a solid-state 
compound because it is a difference in particle density between 
the Af - 1 particle system and the AV + 1 particle system. 
Therefore, if one assumes that a larger negative value gives the 
more reactive Ti atom, the Fukui reactivity ranking parallels the 
scale of reactivity indices. In contrast to this, for the O atoms 
both scales run in opposite directions. Since the Fukui function 
is a relative scale which has to be multiplied by the absolute 
softness S to provide a semiquantitative measure, consequently, 
its meaning (a physical value having the dimension of negative 
energy'1) is not easy to imagine. Similar problems cannot arise 
using the scales of increments and indices. For the remaining part 
of the discussion we only show the Fukui scale for the interested 
reader. 

4.2.3. Acidity and Basicity. Although the initial intention of 
this investigation was based on the compound's basic character 
in a reaction with an acid, we will study its acidity first. From 
Table IV, it is not very surprising that all electrophilicity indices, 
except the one of Ti(3), are very small. Indeed, K2Ti4O9 is a more 
basic compound, as was mentioned before. For K(I) and K(2) 
the S values do nearly equal O, whereas all S values for the O 
atoms are below 0.06, showing them to be not acidic. It is only 
the Ti(3) atom that has a truly higher index of electrophilicity, 
as comes out from the acidity scale 

Ti(3) » Ti(I) > Ti(2) > Ti(4) 

So again Ti(3), the "corner" atom, stands out. Using the net values 
of Table V, which suppress chemical bonding, no significant 
changes can be found. 

Investigating the acidity of the atoms in "K2NbTi3O9", the 
situation is even more extreme than before. Whereas the acidic 
properties of K(I) and K(2) can be neglected and also the average 
value for the O atoms has decreased to about 0.03, the acidity 
of "K2NbTi3O9" is totally based on the Nb atom—in perfect 
agreement with chemical intuition! Surely, a formal Nb(V) atom 
represents a stronger Lewis acid compared to a Ti(IV) atom. 
Consequently, we will expect the Nb atom to be the weakest Lewis 
base in this hypothetical structure. The detailed rank of acidic 
character for the Ti and Nb atoms is 

Nb » Ti(I) >Ti(2) > Ti(4) 

Now we finally come to the compounds' basicity. As far as 
K2Ti4O9 is concerned, all atomic nucleophilicity indices in Table 
IV are large, indicating truly basic behavior. Surprisingly, even 
the K atoms show a very high degree of basicity. This is unex­
pected, and it means that there is still a tendency to remove charge 
from the K atoms. It is not clear at the moment whether this 
observation is of physical significance, or whether the parameters 
of the K atoms need modification. In general, using a semi-
empirical method with non-charge-iterated parameters, the com­
parison between different kinds of atoms should be made with 
caution. 

Regarding the Ti atoms, a basicity order 

Ti(3) > Ti(I) > Ti(2) >Ti(4) 

is found. In contrast to the rank of acidities, the values found 
now are very homogeneous in the sense that no Ti atom is ex­
ceptional. Coming to the most interesting O atoms which lie at 
the reacting internal surface of K2Ti4O9, the most distinct dif­
ferences in basicity emerge. The basicity order is 

0(6) > 0(3) > 0(9) > 0(5) > 0(1) > 0(7) > 0(8) » 
0(2) » 0(4) 

being the same as the one in the reactivity section, a clear hint 
that the O atom reactivities run parallel to their basicities! Again, 
we stress that the most basic O atoms, namely 0(6), 0(3), 0(9), 
0(5), and 0(1), are surrounding the most reactive (and most 
acidic) Ti atom in the corner octahedron. Specifically, it is the 
0(6) atom with its highest Snuc value of 0.992 which is protonated 
in the acid-base reaction of Tournoux! Taking the essence of 
classical acid-base reactions in solutions into account, it is not 
surprising at all that most acidic and most basic atoms try to bond 
together. So what is found for Ti(3) and its nearest shell of O 
atoms is in nice accordance with chemical knowledge. 

Furthermore, to form higher condensates like TiO2(B), for 
example, a further protonation of the O atoms at the "long edge" 
has to take place. Indeed, the Snuc scale shows a continuous 
decrease along OC=), 0(5), 0(7), and 0(8). On the contrary, 
the least basic (and least reactive) atoms 0(2) and 0(4) are never 
affected in these reactions. They are located in the inner part 
of the Ti-O framework and their nucleophilicity indices are ex­
tremely small.92 The same conclusions, to bring the discussion 
of K2Ti4O9 to an end, can be drawn from the net values, without 
any significant differences. 

Investigating the atomic basicities within "K2NbTi3O9", the 
roles of the K atoms remain unchanged. We already expected 
a possible small basicity for the Nb atom, and this is exactly what 
we find. According to 

Ti(4) > Ti(2) > Ti(I) » Nb 

the former order of the Ti atoms has been inverted, transforming 
the inner Ti atoms into the more basic and the outer Ti and Nb 
atoms into the less basic ones. In particular, the strong Lewis 
acid Nb(V) represents the least basic site, confirming our initial 
expectations. 

By looking at the basicities of the O atoms, 

0(4) * 0(7) > 0(8) > 0(2) > 0(1) > 0(6) > 0(9) > 
0(5) > 0(3) 

Rouxel's initial idea has truly been proven to be right. The 0(6) 
atom and the other O atoms at the end of the Ti-O entity have 
been greatly reduced in basicity, and the centers of basicity are 
now located mainly in the middle of the building block! In 
chemical language, this is the result of an extremely strong acid's 
(Nb(V)) power to weaken the basicity of its environment. 

From a more physical point of view, why is there such a drastic 
change in the different indices upon Nb substitution? There could 
be at least three different reasons. First, the influence of the 
different spatial extent of the atomic wave functions of Nb and 
Ti atoms (Table II) could play a role. By looking at the coef­
ficients of the Slater-type orbitals, the Ti atom turns out to be 
more diffuse than the Nb atom. Second, the differences in 
electronegativity (ENTi = 1.5, ENNb = 1.6)7 will have some 
importance for the degree of ionicity versus covalency, and, 
consequently, for the order of basicities. From Table II the larger 
Hu values for Nb than for Ti are obvious, and the stronger atomic 
potential of Nb stands for the greater electronegativity. And there 
is simply the influence of the additional electron which is brought 
into the structure by Nb substitution. 

(91) Because of the high mobility of the K cations, a purely ionic con­
duction mechanism was also found at high temperatures. 

(92) It is true that a protonation of the 0(6) atom will also affect the 
electronic structure of the mid-oxygen atoms. However, here we only focus 
on the initial act of electronic perturbation. 
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We therefore undertook three total energy calculations for 
K2Ti4O9 where (i) the Ti(3) atom entered the computations with 
atomic wave functions of Nb, i.e., having the Nb Slater-type orbital 
exponents; (ii) the Ti(3) atom was given the electronegativity of 
Nb, i.e., represented by the Hn values of Nb; and (iii) the com­
putations were performed for the pure Ti compound that had one 
additional negative charge, i.e., 73 instead of 72 valence electrons. 

The results are given in Table VIII. Keeping in mind that the 
change in the absolute hardness in going from K2Ti4O9 to 
"K2NbTi3O9" turned out to be a factor of about 20, the effect of 
the Nb atomic functions is surprisingly small, as it leads to a 
decrease in rj from approximately 2.55 eV to 2.36 eV. The in­
fluence of the change in electronegativity (diagonal Hamiltonian 
matrix elements) is slightly larger but still comparatively small 
since ti is only decreased to about 2.09 eV. Additionally, the 
detailed analysis of the basicity orders of the O atoms do not show 
any significant changes if compared to the "pure" K2Ti4O9 com­
pound. Neither the difference in atomic wave functions nor the 
differences in electronegativity between Ti and Nb have a strong 
influence on reactivity or basicity. 

However, the change due to the additional electron is tre­
mendous. The absolute hardness is decreased to about 0.11 eV 
which even is below 77("K2NbTi3O9") by 20 meV, a clear hint that, 
in fact, the compound incorporating Nb is better suited to ac­
comodate the additional electron. Furthermore, the order of 
basicity of the O atoms reads 

0(4) > 0(7) > 0(8) > 0(2) > 0(1) «= 0(6) > 0(9) > 
0(3) > 0(5) 

nearly identical (except of the last two atoms) with the one of 
"K2NbTi3O9". So what appeared to be the consequence of an 
"alien" element is, in the end, to a very high degree the effect of 
an additional electron. In molecular orbital language, this electron, 
which is pushing down the crystal's resistance, must be placed 
in an antibonding band. In fact, the total overlap populations of 
the Ti(3)-0 bonds integrated up to the Fermi level (Figure 7) 
reveal that the bond strengths are sharply reduced on going past 
electroneutrality. While the integrated overlap populations remain 
mainly unchanged if the crystal's positive charge is decreased 
toward neutrality, an increase in negative charge weakens the 
Ti(3)-0 bonds greatly. 

As a concluding remark, we would like to highlight that these 
drastic changes in reactivity and basicity do arise, even though 
the total energy difference between K2Ti4O9 and "K2NbTi3O9", 
for example, is no larger than 1.1%. Therefore, big changes in 
"chemistry" may happen as a consequence of only tiny electronic 
perturbations. 

To summarize, we have shown our Ansatz to reproduce the 
atomic characteristics concerning reactivity, acidity, and basicity 
within K2Ti4O9. We believe that this method can be used as a 
tool to design solid-state chemical syntheses. Further work on 
solid-state reactions is in progress. 

Appendix: Reactivity within a Molecule 

The partitioning of a molecule's hardness r\ into atomic (or 
bonding) contributions is directly connected to quantum-chemical 
energy partitioning schemes that have a long history in theoretical 
chemistry.55'56 These techniques have already been reviewed in 
detail.57 

For molecules, the absolute hardness is given by the original 
two-point finite-difference formula (eq 6) of Parr and Pearson. 
Substituting the ionization energy and electron affinity with the 
energies of the LUMO and HOMO (thus directly using Koop-
mans' theorem58) leads to 

1 ,* ^ 2 H + + r ) (A.l) 

= 1/2(6LUMO ~ 6HOMo) ( A . 2 ) 

If the Hamiltonian matrix elements ("hopping elements", 
"exchange integrals") and variational coefficients are already 

known, the energies of LUMO and HOMO can be expressed, 
using EH language5960 as 

6LUMO = 2J Z, ' W L U M O + 2J 2J 2J L ^WLUMOQ-UMO 
R u R* R' u v 

uER IiER »€-R' 

(A.3) 

6HOMO = Z Z ^ / , IHOMO + Z Z Z Z ^M„£MHOMOCI<HOMO 

Ru. R* R' ii <i 
uER nSR "ER' 

(AA) 
Both HOMO and LUMO energies incorporate a sum over all 
atoms R, suggesting a partitioning of the absolute hardness into 
local contributions. A more formal derivation which explicitly 
shows the effect of Koopmans' theorem can be given as follows. 

In molecular orbital theory, typically the molecule's exact wave 
function \j/ is given as the Hartree or Hartree-Fock product of 
one-electron wave functions 0„ themselves approximated according 
to the Ritz variational principle by a linear combination of atomic 
orbitals Ip11, as in 

UD = S L W11Q) (A.5) 
R M 

uER 

Within the one-electron picture, all accessible electronic infor­
mation about a molecule is given by its density matrix P11, 

N/2 

P^ = I » ( C / » (A.6) 
1=1 

for NjI orbitals with occupation numbers n„ O < n, < 2. For 
simplicity we assume the restricted (non-spin-polarized) case here 
and in the sequel. In general, the sum of all one-particle energies 
gives the (simplified) total energy which is equivalent to the exact 
total energy within EH theory according to 

N/2 

E=Zn1C1 (A.l) 
;=1 

This can then be broken down61 into atomic and bonding con­
tributions 

E = EER+ LZERR. (A.8) 
R R* R' 

where we have made the abbreviations of "atomic energy" ER 

ER= E ^ A M (A.9) 
u 

uER 

and "bonding energy" ERR> 

ERR,= E E P ^ , (A.10) 

uER " £ * ' 

and h is the simplified one-electron Hamiltonian of EH theory. 
In full notation we get 

E=LZ PJi^ + L E E L PJi11, (A.l 1) 
Ru Rpi R' M v 

uER uER >•£*' 

HOMO HOMO 
= E E E nfilih^+ E E E E E np\fvih^ (A. 12) 

R u i R* R' u « l 
uER uER » € R ' 

where the first part of the electronic energy is located on the atomic 
centers R while the second part is located between them, i.e., in 
the bonds. For simplification we rewrite the last formula as thus 
formally separating the states below the HOMO (whose energy 
contribution we called E?£M0~]) from the others above (whose 
energy we will call isabove). Finally, we make the simplifying 
assumption that all states below the HOMO will be unaffected 
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Table VIII. EH Total Energies and Absolute Hardnesses of 
K2Ti4O9, "K2NbTi3O9", and Electronically "Modified" K2Ti4O9 

0.8Or 

compound 

[K2Ti4O9]0 

["K2NbTi3Oc"]0 

[K2Ti4O9]0, (Ti(3) with Nb atomic 
functions) 

[K2Ti4O9]0, (Ti(3) with Nb Coulomb 
integral) 

[K2Ti4O9]-

electrons 

72 
73 
72 

72 

73 

£(eV) 

-1425.030 
-1440.572 
-1425.624 

-1428.803 

-1434.442 

l ( eV) 

2.545 
0.130 
2.357 

2.093 

0.110 

whether higher states are occupied or not. This kind of "frozen 
state assumption" suppressing electronic relaxation is equivalent 
to the requirement of Koopmans' theorem. 

Then the partitioning of the absolute hardness of the molecule 
into atomic and bonding contributions may easily be calculated 
by taking the three-point finite-difference approximation (eq 14): 

E = £ "PMO-I + Z Z "HOMO^HOMO^ + 
R n 

n€R 

Z Z Z Z "HOMOCMHOMO^HOMO^M" (A-13) 
R*R' u x 

n<ER » € * ' 

, i , - l-(E+ + E-) - E0 (A.14) 

( / ^ H O M O - I -|_ £ a b o v e \ + + / j rHOMO-1 + £&bove\-\ 

Zz —((Ea^ove')+ •+• f£ ' a , x > v e )~ ' ) — (Ea^°vt)Q 

( £ H O M O - l + £ a b o v e ) 0 ( A 1 5 ) 

(A.16) 

^ r I Z Z ^H0M0AMM + Z, Z. Z, Z- CMHOMO'^HOMO'V + 
^ v R n R * R' M » 

n€R n€R "€«' 

Z, Z, 2CMHOMOAMM + Z - Z . C11UJfJ1Qh^ + 
Rn Rn 

n€R MG« 

Z Z Z Z 2CMHOMOCJ'H0MO',MI' "*" 
R * R' M v 

n<ER 'ER' 

2- 2- Z- 2- C^LUMO Î 
R * R' v. 

n€R « € * ' 

L U M O 7 V 

11112C11H0M0A,,,,- Z. Jl J-, Z-2cMHOMOc„HOMO/iMr (A. 17) 
R n R s>* R' M » 

n€R nER » £ * ' 

. i 2 - Z - C,iLUM0"«x ^ - £- S H O M O " w 
^V R M 

/l„„ + zzc2-
R » 

nER nER 
Z Z Z Z ^LUMOCJ'LUMO"H 

R * R' M " 

Z Z Z I ^HOMOc»HOMoV (A. 18) 
R ?t R' n t I 

fzz 
^ R n 

n€R 

h»M. 

n£« »£«' 

2 - - - 2 ) + M * A L M L U M O ' - M H O M O ^ 

Z Z ^ , ( ^ L U M O ^ L U M O < V H O M O C K H O M O ) 

«esr 

(A.19) 

Obviously the absolute hardness of the molecule can be decom­
posed into contributions of specific atoms R or specific atomic 
orbitals ix. Introducing an approximate atomic reactivity increment 
% that fulfills the equation 

V ' Lh (A.20) 
R 

0.75 

0.40 - Ti (3)-0(6) 

Q. 
O 

a 
0.35-

0.30 

0.20-

70 71 72 73 
Number of electrons 

Figure 7. Integrated overlap populations up to the Fermi level of the 
bonds between Ti(3) and the surrounding O atoms in K2Ti4O9 as a 
function of the valence electron count. 

it is easy to see that this increment arises from difference densities 
both at the atomic site and in the bonds which are weighted by 
the specific Hamiltonian matrix elements while going from the 
LUMO to the HOMO, i.e., as 

IR-

nER 

h AcJI(LUMO - • HOMO) + 

Z Z A„„ACM„(LUMO ""*• HOMO) 
R' » 

•>ER' 

with the abbreviations for the difference densities 

A c ^ ( L U M O — HOMO) = C\WU0 - C2„HOMO 

A c , , „ ( L U M 0 — HOMO) = c ; L U M 0 C „ U j 

(A.21) 

(A.22) 

MO CfiHOMO^HOMO 

(A.23) 

By comparison of these expressions with the result of the two-point 
finite-difference expression, the equivalency of the "frozen state 
approximation" with Koopmans' theorem is obvious. 
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